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SHORT COMMUNICATIONS

A REPLACEMENT FOR THE SRSS METHOD IN SEISMIC ANALYSIS

E. L. WILSON¥, A. DER KIUREGHIANT AND E P. BAYO} J
Department of Civil Engineering, University of California, Berkeley, California, U.S.A. i

SUMMARY

well-known that the application of the Square-Root-of-Sum-of-Squares (SRSS) method in seismic analysis for
bining modal maxima can cause signiﬁcant errors. Nevertheless, this method continues to be used by the profession for
- wmﬁcant bunlldmgs The purpose of this note is to present an improved technique to be used in place of the SRSS method
™% seismic analysis.

‘A ‘Complete Quadratic Combination (CQC) method is proposed which reduces errors in modal combination in all
examples studied. The CQC method degenerates into the SRSS method for systems with well-spaced natural frequencies.
ace the CQC method only involves a small increase in numerical effort, it is recommended that the new approach be used
"a replacement for the SRSS method in all response spectrum calculations.

INTRODUCTION

ts when compared to tlmc-hlstory response calculations. Based upon the early success of the me: hod in
two-dimensions, the SRSS approach is now being used for three-dimensional dynamic analysis without having
“verified for such structures. In fact, the method is now an integral part of a large number of computer
ograms for the dynamic analysis of general three-dimensional systems. 1-3

he problem associated with the application of the SRSS method can be illustrated by its application to the
) storey building shown in Figure 1. The building is symmetrical; however, the centre of mass is located 25
ches from the geometnc centre of the buxldmg The direction of the apphed earthquake motion, a table of
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Figure 1. Simple three-dimensional building example

S—

- Professor of Civil Engineering.
't Assistant Professor of Civil Engineering.
.{ Graduate Student.

3 00')8-8847/81/020187—06$01 00 Received 8 January 1980
:-© 1981 by John Wiley & Sons, Ltd. Revised 24 July 1980




-4

188 SHORT COMMUNICATIONS

4’2’ 4’4' 4’7'4’9' MODE FREQUENCIES

{RADIANS/SEC.)
13.869
13.931

. 43.995

44.189
54.418
77.686
78.029
108.32
108.80

'&’ > ¢5'¢|0'¢|0’¢|2
/ i72.613
¢ 72,

L Aot R 5

Figure 2. Frequencies and approximate directions of mode shapes
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has x, y, as well as torsional components. This type of frequency distribution and coupled mode shapes are ve' "
common in asymmetrical building systems.
This structure was subjected to the Taft, 1952, earthquake. The exact maximum base shears for the 0
exterior frames produced in the first five modes are shown in Figure 3. A mode superposition solution, in whi
all 12 modes were used, produces base shears as a function of time. The maximum resulting base shears in each
of the four frames are plotted in Figure 4(a). For this structural model and loads, these base shears represent the
‘exact’ results.

errors of this order are not acceptable. The sum of absolute values, which is a method normally suggest
the case where frequencies are close, gives a good approximation of the forces in the direction of motion,
overestimates the forces in the normal frames by a factor of 25. For this example, the double sum fneth
required by the Nuclear Regulatory Commission produces results very close to the sum of the abolute valu
The CQC method applied to this example gives an excellent approximation to the exact results. The ma
purpose of this note is to present a summary of this new technique for combining model maxima.
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Figure 3. Base shears in first five modes
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s for the fou* :
tion, in which -3 . BASIC MODAL EQUATIONS
shears in each: .
represent the- &1 .dynamic equilibrium equatxons for a three-dimensional structural system subjected to a ground
®ac ]eratlon ii,(¢), in the x-direction is written as
' MU+ CU+KU = M, i (8)) 1))
ns of the ba aere M C and K are the mass, damping and stiffness matrices, respectivley. The three-dimensional relative

;placements velocities and accelerations are indicated by U, U and U. The column vector M, contains the
cmponents of mass in the x-direction and zeros in all other directions.

tis clear that: i :rhe mode superposition solution involves the introduction of the transformation
Tmton bl SR | U=oy @
sum method 41 ere. (D is the matrix containing three-dimensional mode shapes of the system and Y is the vector of normal
olute values.t. g SEMCO rdmales The introduction of this transformation and the premultiplication of equation (1) by @ yields
i:;:he mai“g‘é i OTMOY + OT COY + BTKDY = &F M, (i (1)) 3)
For proportional damping the mode shapes have the following properties:
& M, = m; )
OF K, = wf m, &)
¢ C; = 2(;0;m; (6)

,m which ¢; is the ith column of ® representing the ith mode shape, m; is the ith modal mass, and {; is the
. damping ratio for mode i. Due to the orthogonality properties of the mode shapes, all modal coupling terms of
“theform ¢ Ad; are zero for i #j. Thus, equation (3) reduces to a set of uncoupled equations in which the typical
‘ deal' equation is of the form:

Y42l Vit o} Y = pgiiy(t)) ' ™
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The evaluation of equation (7) for all modes yields the time-history solution for normal co-ordinates 7
‘total structural displacements, as a function of time, are then obtained from equation (2).

The following equation can be solved for the response y(t)

Vit 200,y + 0F y; = ii(0)

¥ "Note that for e
ration and f
giving the vari:
useful in non-¢
" Considering
yields the cross
of-diagonal te

displacement versus the frequency w; for each {; is by definition the displacement response spectrum f
earthquake ii,(t). A plot of y; .., @; is the pseudo-velocity spectrum and a plot of y; ..., ? is the pseu
acceleration spectrum. These pseudo-velocity and acceleration spectra are of the same physical interest b a
not an essential part of a response spectrum analysis. E:

If the dynamic loading on the structure is specified in terms of the displacement spectrum, thcnqt
maximum response of each mode is given by

Yi.max = pl'yi.max
Therefore, the maximum contribution of mode i to the total response of the structure is

Ui max = ‘bipiyi max

p
For all modes y; m,, i, by definition, positive. The maximum modal displacement U ..., is proportional to :f
mode shape ¢, and the sign of the proportionality constant is given by the sign of the modal partmpatlo !
factor. Therefore, each maximum modal displacement has a unique sign, which is given by equation (11). A d

ments, have unique signs. These signs for the maximum modal base shears of the'example structur
indicated in Figure 3 by arrows.

'THE COMPLETE QUADRATIC COMBINATION METHOD (CQC)

The use of random vibration theories can ehmmate the prevnously illustrated errors which are inherent i in

. D'mensnonal/
‘-modal correla
equatlons (12
insignificant (1
t,h‘e,potentlall)
P -has verified tt

proposed as a direct replacement for the SRSS technique, is presented by the second author in References 6“'21 i
7. The CQC method requires that all modal response terms be combmcd by the application of the follow1
equations:

For a typical displacement component, u,:

U = \/(??“upu ukj)

and for a typical force component, f;:

= \/(Zl:; Ju Puﬁq)

where u,, is a typical component of the modal displacement response vector, U; ..., and f,; is a typical fc
component which is produced by the modal displacement vector, U, ... Note that this combination formt
of complete quadratic form including all cross-modal terms, hence, the reason for the name Comipl
Quadratic Combination. It is also important to note that the cross-modal terms in equations (12) may assu
positive or negative values depending on whether the corresponding modal responses have the same
opposite signs. The signs of the modal responses are, therefore, an important key to the accuracy of the C ‘
method.

In general the cross-modal coefficients, p;;, are functions of the duration and frequency content of thel
loading and of the modal frequencies and damping ratios of the structure. If the duration of earthquake is 10
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, 8 L) G +r)PP 3
Py = <1—r2)2+4¢,c,r(1+r2)+4<c, O |

_ 8L2(1+r)r32
Py = =P+ a1+ 1)

(14)

Table I. Modal cross-correlation coefficients

_ R Mode 1 2 3 4 5 Freq. rad/s
rrtional to th 1 1000 0998 0006 0006 0004 13-87
participat 2 0998 1000 0006 0006 0004 13-93
3 0006 0006 1000 0998 0180 43-99
4 0006 0006 0998 1000 0186 44-19
5 0004 0004 0180 018 1000 5442

COMPUTER PROGRAM IMPLEMENTATION

;j CQC method of modal combination has been incorporated in the computer program TABS—Three-
s 1mens1onal Analysis of Building Systems.! This involved the addition of one subroutine for the evaluation of
Maodal correlation factors, Equatlon (14), and the replacement of the SRSS by the CQC method as given by
tions (12). The increase in computer execution time due to the addition of the CQC method was
geinsignificant (less than 0-1 per cent for a typical structure). Therefore, there is no justification to continue using
otentially erroneous SRSS method. The application of the modified TABS program to several buildings
erified the validity of the CQC method. Other examples are given in Reference 7.

L FINAL REMARKS
,hould be pomted out that a method similar to the CQC method was first proposed by Rosenblueth and

a; unfortunately been neglected or misrepresented over the past several years. For example the NRC

ion formul ngulatory Guide® recommends it for structures with closely spaced modes, however, it wrongly spem jes the
me Completc-¥ tr -modal terms as being always positive. This will result in overly conservative response estimates in some
'y may assu : p cations. Concern that this earlier method is being misunderstood, and the fact that the CQC method is
: the same 0 sitapler and more practical, have prompted the writing of this note.

g ft should also be pointed out that the SRSS method gives good results for some structures subjected to two-
*dire I'ectional seismic input, even when the modal frequencies are closely spaced. It can be shown that this is due

y of the CQC.. 8
- the S} ok




‘and, therefore, the SRSS method will lead to erroneous results.
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when the three-dimensional structure is highly asymmetric, the cross-modal terms would still be sngmﬁcan

Based on the preceding numerical example and the above discussion, it is strongly recommended that
use of the SRSS method for seismic response analysis of structures be immediately discontinued. Continugdg
use of the SRSS technique may dramatically overestimate the required design forces in some structurajg
elements or it may significantly underestimate the forces in other elements. The proposed CQC method
based on fundamental theories of random vibration and consistently yields accurate results when compared g
time-history analyses.
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